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A Damped Non-linear Least-squares Computer Program (DALSFEK) for 
the Evaluation of Equilibrium Constants from Spectrophotometric and 
Potentiometric Data 
By Roland M. Alcock, Frank R. Hartley,"jt and David E. Rogers," Department of Chemistry, The University, 

Southampton SO9 5NH 

A computer program (DALSFEK) has been developed which uses a damped non-linear least-squares iterative 
method to fit equilibrium constants to spectrophotometric and potentiometric data. The program has been designed 
in such a way that subroutines that can deal wi th other types of response variable can easily be added, and the 
program can utilise several types of observed data simultaneously. An efficient least-squares algorithm due to 
Marquardt, which combines the method of steepest descent wi th methods based on the Taylor series in such a way 
as to exploit the advantages of each, ensures smooth convergence to minimum-variance estimates of the parameters. 
Facilities are incorporated which allow adjustments to be made to allow for possible sources of systematic errors. 
The program has been tested on a number of systems and found to be very convenient to use as well as  giving satis- 
factory results. 

EQUILIBRIUM constants cannot be measured directly but 
must be calculated from an observed response function 
of a fixed (but experimentally adjustable) variable. 
Quite often the complexity of the system that can be 
studied experimentally, and the resulting amount of 
information that can be obtained, is very dependent on 
the nature of the calculation procedure and the con- 
venience of data handling. Before the widespread 
availability of electronic computers, most calculation 
procedures manipulated the data into a form suitable for 
linear graphical representati0n.l However, only rela- 
tively simple systems can be treated in such a linear 
fashion; for more complex systems involving the pre- 
sence of three or more different complex species in solu- 
tion it is first virtually impossible to produce a linear 

t Present address : Department of Chemistry and Metallurgy, 
The Royal Military College of Science, Shrivenharn, Swindon, 
Wiltshire SN6 8LA. 

method of data treatment and secondly generally 
undesirable because of the approximations (and hence 
errors) inherent in such a treatn1ent.l The main 
limitations of linear (graphical) procedures for the 
determination of equilibrium constants are: (i) it is 
difficult to obtain reliable estimates of the errors in the 
parameters; (iz) i t  may be unclear whether the para- 
meters give a reasonable fit to the experimental observ- 
ables, thus testing different possible models presents 
difficulties; (iii) in some complicated cases only a 
portion of the data may be used in evaluating a particular 
parameter (e.g. by extrapolation to some point), and the 
precision of the parameter becomes limited; and (i.) con- 
siderable effort may be expended in arriving at justifiable 
assumptions for manipulating the equations into a form 
that can conveniently be plotted. 

F. J .  C. Rossotti and H. S. Rossotti, ' The Determination of 
Stability Constants,' McGraw-Hill, Ncw York, 1961. 
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The advent of computers has brought non-linear data 
treatments within the grasp of most research workers. 
Furthermore, since computer evaluation of either a 
linear or non-linear system involves preparation of the 
input data for the program, there is no justification for 
using a linear treatment in situations in which it is not 
rigorously applicable. A considerable number of non- 
linear cornyuter-based methods for the evaluation of 
equilibrium constants have been described.2-11 These 
can very crudely be divided into two groups: (a) pro- 
grams designed for the analysis of one type of data 
(e.g. spectrophotometric only) ; (b )  programs designed 
for the analysis of several types of data. We have 
already commented on the advantages in terms of 
reliability of using data obtained from more than one 
type of physical technique.12 Computer programs that 
are suitable for use with several types of data are domin- 
ated by Sill6n's LETAGKOP VRID.13 However, this 
is such a large comprehensive program that not only is 
familiarisation a mighty task but also the program 
requires a very lengthy input deck for each run. 
Furthermore, not everyone has access to a computer with 
sufficient store. The present program was conceived as 
one that could accept data from as many physical tech- 
niques as possible, whilst retaining simplicity of oper- 
ation. 

Backgrowad to the Program. -Matrix approach to data 
handling. In  order to facilitate the handling of large 
amounts of data, a matrix approach based on that of 
Hamilton l4 was used. Consider a situation in which 
there are n experimental observations 0,, 0,, , . . 0,, 
each having an associated random error, el, e2, . . . e,, and 
each depending on m unknowns xl, x2, . . . x,. Then 
we can write equation (1). If the initial estimates of the 

0 ,  =ft(x,x, * * X t n )  + ei (1) 
parameter values are x?, x," . . . x,,,O, then the observ- 
ables are expressed about the initial point in parameter 
space according to the Taylor series expansion l5 by 
( 2 ) ,  and hence (3) in which terms higher than first order 

have been neglected. The change (AOi) in the observ- 

* Italic upper case letters reprcsent row or column vectors and 
italic bold upper case letteis are two-dimensional matrices con- 
taining elements in two or more columns and rows. 

2 C.  W. Childs, P. S .  Hallman, and 13. D. Perrin, Talanta, 1969, 
16, I l l 0  and refs. therein. 

F. J.  C. Kossotti, H. S .  Rossotti, and R. J .  Whewell, J .  Inovg. 
Nucleav Chem., 1971, 33, 2051 and refs. therein. 

P. Gans and 13. M. N. 13. Irving, J .  Inovg. Nuclear Chem., 
1072, 34, 1886. 

T. 0. ItZaier and K. S. Drago, Inovg. Chem., 1972, 11, 1861. 
A. Vacca, A. Sabatini, and M. A. Gristina, Co-ovdination 

Chem. Rev., 1972, 8, 5. 

able Oi consequent upon making the corrections Axj 
are (4) which may be expressed in matrix notation as 

(5 )  * in which the problem has been linearised with 0, 

O = B X + E  (5 )  

S, and X containing the elements AOi, (3f/axj),, and AXj 

respectively. If a vector X represents the ' best-fit ' 
values of X to the regression equation, then a vector of 
residuals ( V )  can be defined as in (6). The quantity to 

-+ 

3 

V = O - B X  (6) 
be minimised is the sum of the squares of the residuals (S) 
given by (7) where is the transpose of V .  If the 

N 

s = vv (7) 
variances of the residuals are not equal, a weighting 
matrix can be introduced so that we can write (8) where 

s = vwv (8) 

W is the inverse of the moment matrix M which con- 
tains the variances of the residuals ot2 as diagonal 
elements and the covariances oij as off-diagonal elements. 
Although the absolute values of these quantities are 
generally unknown, they are usually known to within 
a constant scale factor, 02, the variance of an observation 
of unit weight. Hence, it is only necessary to know the 
relative magnitudes of oi2 and oij, and oij are usually 
arranged to be zero, making W a diagonal matrix. 

Substituting (6) into (8), we obtain (9) since equation 
(10) applies. Then we can write (11) and (12), and 

-+- -+ 
S = (0 - B X )  W(O - B X )  (9) 

( B X )  = X B  (10) 
N 

-+N 3 N  

(13) follows. Differentiating with respect to each of the 
N N 

s = zwo + E W B Z  - TWB? - Zih'O (11) 
N 

N 

OWB? = O W E 2  (12) 
N N 

S = ZWO + ZEWB? - 22gWWO (13) 
A. Sabatini and A. Vacca, J.C.S. Dalton, 1972, 1693. 
S.  Feldberg, P. Klotz, and L. Newman, Inorg. Chem., 1972, 

9 D. J. Leggett and W. A. E. McBryde, Analyt .  Chem., 1975, 
11, 2860 and refs. therein. 

47, 1065. 
lo A. Sabatini, A. Vacca, and P. Gans, Talanta, 1974, 21, 53. 
l1 P. Gans, A. Sabatini, and A. Vacca, Inovg. Chim.  Acta, 1976, 

l2 R. M. Alcock, F. R.  Hartley, D. E. Rogers, and J.  L. Wagner, 

l3 L. G. Sillen, Acta Chew. Scand., 1964, 18, 1085. 
1* W. C. Hamilton, ' Statistics in Physical Science,' Ronald 

l5 I. G. Betteley, C .  J.  Brookes, and S. M. Loxston, ' Mathe- 

18, 237. 

Co-ovdination Chem. Rev. ,  1975, 16, 59. 

Press, New York, 1964. 

matics and Statistics for Chemists,' Wiley, New York, 1966. 
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parameters X in turn, and equating to zero we obtain 
(14) and (15) and hence (16). In  a linear situation X 

3 

N 
4 - m  as = 2 ( a x ) ( B w B Z  - %WO) (14) 

( i iWB)Z = Ewo (15) 

x' = (ZWB)-lEWO (16) 
would give the least-squares estimates of the parameters 
in one iteration, but in a non-linear case, such as the 
present, X merely gives the correction vector AX which 
(theoretically) produces a lower sum of squares of the 
errors. This is because the Taylor expansion is not 
strictly valid, since aJ/axj varies with xj. In  this way, 
a vector of improved values of the parameters is gener- 
ated which is used as the estimates for the next calcul- 
ation, so that,  if the function is well behaved and the 
starting vector X o  not too far from the final values, the 
process will converge to the least-squares estimates in a 
finite number of iterations. 

Estimates of the standard deviations of the parameters 
X can be obtained from the variance-covariance matrix 
of the parameters l6 3Ix, defined as in (17) where &[f(x)] is a 

-+ 

3 

-+ 4- N 

M ,  = E[(X - X ) ( X  - X )  ] (17) 
statistical concept known as the ' expected value ' of the 
function. Therefore if the equality (18) applies, we 
obtain (19) and (20) .  But W is the inveise of the 

Tv 

A = B W B  (18) 

M ,  = E[A-~%V(O - B X )  (0 - BX)-WBA-l] (19) 

= A-l"SW,[(O - B X ) ( O  - BX)?WBA-l (20) 
matrix of the variances of the residuals so that we can 
write (21) and hence (22) .  As already noted, the weight 

N w-1 = &[(O - B X ) ( O  - B X )  ] (21) 

M ,  = A-lEWW-lWBA-l = A-l = (EWB)-l (22) 
matrix is usually only known to within a scale factor of 
o - ~ ,  so that M ,  is given by (23) where Wo contains the 

N 

M ,  = .yswoB)-l (23) 
relative magnitudes of the weights but not their absolute 
values. An unbiased estimate of a2 is obtained from 

l6 Ref. 14, ch. 4, p. 129. 
l7 P. J.  Lingane and 2. 2. Hugus, Inorg. Chem., 1970, 9, 757. 
l8 R. S. Tobias and M. Yasuda, Inorg. Chem., 1963, 2, 1307. 

W. E. Wentworth, W. Hirsch, and E. Chen, J .  Phys .  Chem., 

2o D. Inman, I. Regan, and 13. Girling, J .  Chem. SOC., 1964, 349. 
21 J. A. Chopoorian, G. R. Choppin, H.  C. Griffith, and R. 

22 I. G. Sayce, Talanta, 1968, 15, 1397. 
23 D. D. Perrin and I. G. Sayce, Talanta, 1967, 14, 833. 
24 J.  B. Scarborough, ' Numerical Mathematical Analysis,' 

1967, 71, 218. 

Chandler, J .  Inorg. Nuclear Chem., 1961, 21, 21. 

John Hopkins Press, Baltimore, 1930, p. 187. 

(24) where n - m is the number of degIees of freedom of 
a2 (n = number of observations, m = number of para- 
meters determined). 

N 

4 = vwov/(n - m) (24) 
Minimisation of a non-linear f m c t i o n .  The most 

commonly used procedure in the field of equilibrium 
constants 5 9  17-23 for the non-linear least-squares estim- 
ation of a set of parameters is the Gauss-Newton 
method,24 in which the function to be fitted is expanded 
as a Taylor series truncated a t  the first-order term. 
Occasionally, the second-order terms have been taken 
into account (the Newton-Rapheson approach 24) in an 
effort to obtain more efficient convergence properties, 
but there are conflicting reports 6 ~ 7  regarding the efficacy 
in so doing. 

An alternative method is the direct-search 25 or ' pit- 
mapping ' approach of S i l lh  and his  coworker^,^^^^^-^^ 
in which the error-square sum S for an initial set of 
parameters X is calculated and then S is recalculated 
with each individual xL in turn changed by a given hi. 
From the S values for +(n + 1)(n + 2) systematically 
chosen points (n = number of equilibrium constants 
being adjusted), the coefficients of a second-degree surface 
are found and hence the minimum X o  of the surface 
evaluated. This set of values is then used for the start  
of the next iteration. 

The third m e t h ~ d , ~ ? ~ ~  known as the steepest-descent 
method,31 is conceptually the simplest to envisage. The 
parameters are adjusted in proportion to the magnitude 
of the derivatives evaluated at the particular point in 
parameter space currently occupied. The direction of 
movement is always ensured to be down the 'slope'. 
However, the major disadvantage of this type of method 
is that, after initial rapid progress, further minimisation 
is painfully This is only to be expected, since 
as the minimum is approached the magnitudes of the 
derivatives must become much smaller. 

Each of these methods has its merits and each is 
claimed 7 9 8 9 2 7  to have specific advantages over the others, 
but the main problem encountered by all of them is the 
reliability of convergence. In  order to obtain the cor- 
rections with which to calculate better estimates of the 
parameters, X ,  so as to be able to commence the next 
iteration of the Gauss-Newton refinement, equation (16) 
must be solved. This necessitates inverting the matrix 
ZWB, which can only be achieved if the determinant is 
not zero. (If it is zero, the matrix is singular and has no 
inverse, in which case the problem would have no unique 

25 J. J .  Kjnkare, Analy t .  Chem., 1970, 42, 1322. 
26 L. G. Sillkn, Acta Chem. Scand., 1962, 16, 159. 
27 L. G. S M n ,  Acta Chew. Scand., 1962, 16, 173. 
28 L. G. Sill&, Puve A p p l .  Chem., 1968, 17, 55. 
29 L. G. S i l k  and B. Warnqvist, AvKiu. K e m i ,  1969, 31, 315. 
30 L. K. Lieto and C. H. Liu, Report OKNL-TM-2714, Oak 

Ridge National Laboratory, Oak Ridge, Tennessee, 1969; Dis- 
sertation, Arizona State University, 1969. 

31 H. A. Spang, J .  SOC. I n d .  A p p l .  &laths. Rev. ,  1962, 4, 343. 
32 C. G. Wynne, Proc. Phys .  SOC., 1959, 73, 777. 
33 N. R. Draper and H. Smith, ' Applied Regression Analysis,' 

Wiley, New York, 1966, ch. 10. 
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solution and the parameters would be indeterminate.) 
If the determinant, although not zero, is very small the 
matrix is said to be ill conditioned, a problem that has 
often been found previously in equilibrium-constant 
calculations .34-36 

The physical effect of ill conditioning is that S is 
subject to haphazard and, in some cases, wild oscill- 
ation 37 instead of steady convergence to a minimum 
value. This is due to the parameter surface (if we 
momentarily consider three dimensions only) being a 
narrow, elongated, bent valley, so that the use of equa- 
tion (16) results in rapid oscillation of direction across 
the narrow valley. Furthermore, if the starting values 
of the parameters are too far from the minimum, the 
Taylor-series approximation is poor and there is a con- 
sequent tendency to ‘ overshoot ’. For this reason many 
workers emphasise the importance of good initial esti- 
mates of parameter values in order to ensure conver- 
gence .59 l8 

Most of the sophisticated modifications of the Gauss- 
Newton-Rapheson procedures, together with the various 
new algorithms for minimisation of a function, have been 
designed to enhance the speed and reliability of conver- 
gence. It is interesting to note how similar they are, 
being generally classifiable into two groups : (a) scaling 
or optimisation of the parameter corrections is carried 
out subsequent to the calculations, so as to bring about 
the maximum decrease in S for that iteration 
(Hartley’s 38 and Greenstadt’s 39 methods both use this 
approach); (b )  a modification is made to the basic 
equation prior to the calculation of the corrections which 
tries to ensure that convergence will eventually be 
achieved. (Sillkn’s l3 and Marquardt’s methods 40941 

both use this approach, whilst the Fletcher-Powell 
method 4 2 9 4 3  uses a combination of both approaches.) 

In  the present program convergence was effected 
using Marquardt’s algorithm 409 41 which combines the 
method of steepest descent with methods based on the 
Taylor series expansion in such a way as to exploit the 
advantages of each. The optimum direction for con- 
vergence (A)  is found by solving equation (25) where I 

N 

(ZWB + c 1 ) A  = BWE (25) 
is the unit matrix, B,  W ,  and E have the same significance 
as before, and c is a quantity added to the diagonal 
elements of ZWB (which for this procedure to be 

* If ci-l is already + l . O  compared with the number of signifi- 
cant figures carried, then go on to tests (ii) and (iii) and ignore 
comparisons with S (C~-~ /P) .  

t P is an arbitrary scalar of value > 1. 
1 w Is the power to  which I/ is raised to produce a reduction 

in the sum of the squares of the errors. Thus if V = 10, ci-l is 
multiplied by 101, 102, lo3, atc., until S ( C ~ - ~ V ~ )  <Si. 

5 Where parameters are highly correlated, c may increase to  
unreasonably large values. In such cases a scale factor bi for the 
correction vector A is used when the angle, determined by ci, be- 
tween the correction vector A and the steepest-descent direction 
is less than r/4. 

34 R. H. Moore and R. K. Zeigler, Los Alamos Scientific 
Laboratory Report, LA-2367, March 1960. 

35 D. Dyrssen, N. Ingri, and L. G. Sillkn, Acta Chem. Scand., 
1961, 15, 694. 

meaningful must first be normalised so that the diagonal 
elements are unity). When c = 0, A is the Taylor- 
series direction, and as c increases A swings towards the 
steepest-descent direction. Since for many real systems 
the angle between the Taylor-series and the steepest- 
descent directions is between 80 and Marquardt’s 
method attempts a compromise between the two. 
Within iterations, c is increased until a reduction in the 
sum of the squares of the residuals (S) is obtained; 
between iterations, c is reduced to ensure second-order 
convergence. The basic strategy is therefore as follows. 

On the i th iteration ci must be such that Si + 1 < S,. 
Let V > 1 (V is a scalar). Set c, equal to 0.01. Com- 
pute S(cL--l) and S(ci-l/V).* Then: (i) if S(C; -~ /V)  < Si, 
let ct = cL-l/V; (ii) if S(c{-l/I‘) > Si and S(ci-l) < Sz, 
let ci = cz--l; and (iii) if S(ci-l/V) > Si and S(ci-1) > S,, 
increase c by successive multiplication by I‘ t until for 
some smallest w,$ S(c,Vtu) < Si, then let ci = C ~ - ~ V ~ . §  
Although it might appear that  this method will involve 
a large number of calculations because of the repeated 
inversion of the matrix (RWB + c I ) ,  in fact this is not 
so because BWB is symmetric and can be diagonalised 
according to equation (26)’ where L is a diagonal matrix 

N 

N 

N N 

(BWB)-l = (GL74-l = 7JL-lU (26) 
of eigenvalues and U is the corresponding matrix of 
orthogonal eigenvectors. Hence, since (27) is applicable 

N N 

(BWB)-l = U diag Zj-lTJ (27) 
where Zj are the diagonal elements of L, we obtain (28). 

N 

(BWB + cI)- l  = diag [l/(Zj + c ) ]  U (28) 

Equation (28) affords an alternative view of why 
Marquardt’s algorithm is so successful a t  ensuring 
convergence. The addition of c to the diagonal elements 
of has helped to overcome the ill conditioning 
because, if the smallest eigenvalue of BWB was pre- 
viously I,, i t  will now be lo + c. Since the determinant 
cannot now be zero the singularity problem has been 
removed. 

Marquardt’s algorithm ‘ has previously been used 
successfully in such diverse areas as force-constant 
c a l ~ u ~ a t i o n s , ~ 4 ~  45 e. s.r. and n .m.r. calc~lations,~~9 47 

Scand., 1959, 13, 2023. 

N 

36 J. C. Sullivan, J .  Rydberg, and W. I?. Miller, Acta Chem. 

37 D. P. Feder, A p p l .  Optics, 1963, 2, 1209. 
38 H. 0. Hartley, Technometrics, 1961, 3, 269. 
39 J. Greenstadt, Math.  Comput., 1967, 21, 360. 
4O K. Levenberg, Quart. A p p l .  Maths., 1944, 2, 164. 
41 D. W. Marquardt, J .  SOC. I n d .  A p p l .  Maths., 1963, 11, 431. 
4 2  R. Fletcher and M. D. J .  Powell, The Comp. J . ,  1963, 6, 163. 
43 G. W. Stewart, J .  Assoc. Comp.  Machin., 1967, 14, 72. 
44 D. M. Adams and R. G. Churchill, J .  Chem. SOC. ( A ) ,  1970, 

45 D. Papousek, S. Toman, and J .  Pliva, J .  Mol. Spectroscopy, 

46 D. W. Marquardt, R. G. Bennett, and E. J .  Burrell, J .  Mol .  

47 J .  Pliva, V. Spirko, and S. Toman, J .  Mol. Spectroscopy, 

697. 

1965, 15, 502. 

Spectroscopy, 1961, 7, 269. 

1966, 21, 106. 
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optical-lens design,32937*48*49 and fitting of equations to 
chrorna t~grams.~~ It was therefore adopted in the 
present work. 

Model Testing.-In order to test a series of models to 
determine which gives the best fit to the observed data 
it is necessary to have some measure of the ' goodness of 
fit '. For a non-linear treatment there is no perfect 
measure 51-53 of the ' goodness of fit ' and a number of 
possibilities have been suggested in the literature. Be- 
cause different measures are affected differently by 
truncation of the Taylor series expansion depending on 
the ' degree of non-linearity ', two ' goodness-of-fit ' 
measures are used in the present program, S and R. 

S ,  the sum of the squares of the errors between the 
observed (o,,~,~.) and calculated ( Ocalc.) observables 
(absorbance or e.m.f .) is defined by (29) .54 The Hamilton 
R factor 6?14 is defined by (30) where Wi are the appro- 
priate weighting factors. This value is compared with 

N 

i = l  
s = 2 (Oohs. - ~calc.)i:! 

R = 2 Wa(Ootis. - ~ r a l v . ) i a /  wi(onLx.):]' (30) 

(29) 
N " i r  1 i = l  

the limiting value Rlim given by equation (31) where 
ci is the residual in the i th equation calculated from 
pessimistic estimates of the errors in all the experimental 
quantities using error-propagation rules.55 A satisfac- 

tory fit may be assumed if R < Rlim. If two different 
models both yield R factors less than Rlinl then the R- 
factor ratio test can be applied. Thus if two models H ,  
and H ,  give R factors R, and R2 respectively, then model 
H ,  can be rejected at the a-significance level if equation 
(32) applies, where m is the number of unknown para- 

meters fitted to the data and n - m is the number of 
degrees of freedom of the least-squares adjustment. 
The value of R,,,-,,,, is found from statistical tables.14 
If model H ,  cannot be rejected by inequality (32) then 
the two models are statistically indistinguishable (at 
significance level a) .  In this case, however, they may be 
distinguishable on chemical grounds or because one 
model gives unacceptable parameter values such as 
negative absorption coefficients in spectrophotometry. 

The Program DALSFEK. The present program, 
DALSFEK, which incorporates the ' damped least- 
squares ' algorithm of Marq~ard t ,~ ,  can calculate 
equilibrium constants from several types of variables. 

* For details see Notices to Authors No. 7, J .C.S .  Dalton, 
1977, Index issue. 

48 C. G. Wynne and P. M. J .  H. Wormell, A p p l .  Optics, 1963, 2, 
1233. 

49 G. H. Spencer, A p p l .  Optics, 1963, 2, 1257. 
50 S. A. Roberts, D. H. Wilkinson, and L. R. Walker, Analy t .  

51 E. M. L. Beale, J .  Ro-y. Statistical Soc., 1960, B22, 41. 
Chem., 1970, 42, 886. 

A flow diagram for DALSFEK is available as Supple- 
mentary Publication No. SUP 22168 (8 pp.).* To date 
we have written and successfully used 56957 subroutines 
for both absorbance and e.m.f. data, and the program 
is so structured that if several observables are monitored 
simultaneously all the data can be used in evaluating 
the equilibrium constants. The subroutines are as 
follows. 

DALS. DALS is the master routine. I t  reads in the 
control parameters such as the number of parameters 
to be adjusted, the number of fixed parameters, and the 
number of equilibria. After defining the equilibria it 
then calls CYCLE. 

CYCLE defines the parameter arrays and 
assigns codes to the types of parameters to be adjusted. 
It controls the use of the magnetic-tape backing store, 
so that, as the program cycles over each experiment the 
total (analytical) concentrations of the components, the 
experimental observables, and (after entering CONC), 
the concentrations of each species are stored in a system- 
atic way. The subroutine CONC is called to calculate 
the concentrations of the species by a Gauss-Newton 
iteration of the mass-balance and equilibrium equations. 

The B matrix of differentials is also created here and 
the matrix &WB formed. If these differentials can be 
obtained analytically from the concentrations the pro- 
gram does so, but for the equilibrium constants K the 
observables are related to these parameters in a non- 
explicit way. Difference approximations to the deriv- 
atives are then calculated using relation (33) (0 = 

observable, K = equilibrium constant) which involves 
repeated calling of subroutine CONC. The fraction, 
A ,  by which K is incremented can be varied at  will but 
0.001 (0.1%) has been found to be satisfactory. 

When EWB has been created it is normalised and sub- 
routine LEASTSQ is called to calculate the corrections to 
the parameters. When the problem has converged, 
subroutine ERROR is finally called to calculate the 
standard deviations of the parameters and also some 
statistical quantities to estimate the ' goodness of fit '. 
The final refined values and estimates of the standard 
deviations are then printed out. 

CONC. This is a general subroutine which will 
calculate the concentrations of all the species in a 
system, given only the equilibrium constants and the 
mass-balance information. This is done by a Gauss- 
Newton iteration on some ' guessed ' concentrations. 
Consider m equilibria relating n species in solution. At 
equilibrium there are m equations of the type (34) where 

CYCLE. 

aOi/aKi zzz AOi/AKi (33) 

log,Ki = aillogecl + . . ainlogecn (34) 
5 2  1. Guttman and D. -4. Meeter, Technometrics, 1963, 7, 623. 
53 H. 0. Hartley, Biometrika, 1964, 51, 347. 
54 W. E. Wentworth, J .  Chem. Educ., 1965, 42, 96.  
55 H. H. Ku, J .  Res. Nut .  B u r .  Stand. Sect. C ,  1966, 70, 263. 
56 R. M. Alcock, F. R. Hartley, D. E. Rogers, and J .  L. Wagner, 

57 F. R. Hartley, G. W. Searle, R. M. Alcock, and D. E. 
J.C.S.  Dalton, 1975, 2189, 2194. 

Rogers, following paper. 
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ai, > 0 for a product and (0 for a reactant. 
expressed in matrix notation by (35). 

This is 
Also, consider- 

log& = AlogeC (35) 

Tj = qjlcl + . - qjnclz (36) 

ation of the material balance gives (36) where Tj is the 

total (analytical) concentration of component j ;  qji 

are integers defining the number of atoms of component 
j in species i. I n  matrix notation this becomes (37). 

T = Q C  (37) 
Since A and Q are fixed by the equilibrium definition, 
then from a knowledge of T and the current values of 
logeK a trial set of C can be adjusted until equations (35) 
and (37) are satisfied. 

The B-matrix elements can be obtained analytically 
since the equalities (38) are applicable. Probably because 

of these exact differentials, i t  has been found that this 
routine is remarkably well behaved and gives species 
distributions satisfying the equations from almost any 
initial starting set of concentrations. 

Table 1 shows an example of the fitting of CONC to 

TABLE 1 

Application of CONC to synthetic data generated for the 
equilibria : 

Kl 

Kz 

2[PdC1,I2-+ [Pd2C1J- + 2C1- 

[Pd2C1,l2- + solvent 

Analytical chloride concentration ( [C1IT) = 5.60 x 
mol dme3, analytical palladium concentration 

([PdIT) = 8.054 x mol dm-3, K ,  = 2.818 mol 
d1i1r3, K ,  = 1 x 

[Pd,Cl,(solvent)] - + Cl-- 

In it ial Final 

Quantity value value 
' guessed ' ' calculated ' 

[PdC1,2-]/mol dm-3 1.0 x 10-4 3.633 x 10-5 
[Pd,C1,2-]/mol dmP3 1.0  x 10-4 3.727 x 10-4 
[Cl-]/mol dmPa 1.0 x lop2 3.159 x 
[Pd,Cl,(solvent)-1 /mol dm- 1.0 x 1.800 x loe5 
[ClIt/mol dm-3 5.600 x 
[PdIt/mol dm-3 8.054 x 
KJmol dn1r3 2.819 
K2 1.000 x 10-4 

some synthetic data for a two-equilibrium model. The 
(arbitrary) criterion for convergence used to obtain the 
concentrations in Table 1 was S < 5.0 x where S is 
given by (39) in which nT is the number of chemical 

components and nK is the number of equilibrium 
constants. The relative sum of the squares of the 
residuals must be minimised in this way because the 
absolute values of the analytical concentrations, T ,  and 
the equilibrium constants, K ,  can vary over many orders 

of magnitude. For the mass-balance equations this is 
analogous to minimising the weighted sum of the squares 
of the residuals, in which the weighting factors are the 
reciprocals of the squared observables. For the equili- 
brium equations the comparison is less clear, since the 
residuals in the least-squares equations are defined in 
terms of the logarithms of the equilibrium constants. 
For this reason weighting factors were not incorporated 
into these least-squares equations. 

When the concentrations of the species have been 
found a control parameter is read in, which determines 
which OBSERV subroutine is called. Thus, if the 
observables are absorbances, subroutine OBSERV 1 is 
entered. 

This subroutine allows stability con- 
stants to  be calculated from spectrophotometric data. 
The absorbances of the solutions are calculated from the 
species concentrations assuming that Beer's law holds. 
The molar absorption coefficients are read in when this 
routine is first called. If the molar absorption 
coefficients are to undergo refinement, then initial 
' guessed ' values are read in by OBSERV 1. 

If it is desired to calculate weights and 
minimise the weighted sum of the residuals in the 
absorbances, this subroutine is entered in order to 
estimate the variances of the residuals. At a particular 
wavelength A the residual, r ,  is given by (40). Assuming 

Control then returns to CYCLE. 
OBSERV 1. 

VARIAN 1. 

y = Aobs. - Acalc. 

that  the variance of Y depends only on the errors in the 
experimental quantities, the observed absorbances ( A ) ,  
and the total (analytical) concentrations (Tj), then by 
error-propagation theory, we can write (41) provided 

(40) 

there is no error correlation between A and the Tj. 
and O T ~ ~  are the variances in the absorbance readings 

and the total-concentration values respectively. These 
quantities may be known from a previous experiment or 
estimated from repeat values of the same observation. 

It is a common procedure in stability- 
constant determinations to measure free-metal or free- 
ligand concentrations potentiometrically. If this routine 
is supplied with inforrnation as to which species is being 
monitored in this way (e.g. free metal ion), e.m.f. data 
are readily calculated for comparison with experimentally 
observed values. Thus, if the species being experi- 
mentally determined in this fashion is numbered as 2, 
and the concentration of this species in the reference 
electrode is c,,, then a calculated e.m.f. value may be 
evaluated from the Nernst equation using co and the 
concentration of species 2 as obtained from subroutine 
CONC. 

A subroutine similar to that used in OBSERV 1 is 
used to calculate the variance. 

LEASTSQ. When all the observables have been 
calculated from the initial values of the parameters and 

OBSERV 2. 
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the sum of the squares of the errors calculated, this 
routine is entered from CYCLE to calculate the cor- 
rections to the parameters. The matrix BWB is diagon- 
alised by subroutine HDIAG. By multiplying the 
eigenvectors into the matrix BE and subsequently 
multiplying by the reciprocals of the eigenvalues, the 
contribution to the correction vector from each eigen- 
value is calculated. The corrections are applied to the 
parameters and subroutine CONC, and subsequently 
an OBSERV subroutine, are called to recalculate the 
sum of the squares of the errors for comparison with 
the previous value. Marquardt's algorithm is then 
followed to decide whether the corrections must be 
' damped ' or whether the new values of the parameters 
can be carried through to begin the next iteration. 

The eigenvalues (roots) and the calculated parameter 
corrections may be written out in this subroutine. This 
is useful for observing the conditioning of BWB and for 
checking whether any large parameter corrections have 
consequently been calculated. 

HDIAG. This routine calculates the eigenvectors 
and eigenvalues of a square symmetric matrix by a 
Gauss- Jordon elimination. 

This is the last subroutine entered before 
return to the master routine DALS. It calculates an 
unbiased estimate of the variance of an observation of 
unit weight, 02, as in equation (24), and the standard 
deviations of the parameters from the diagonal elements 
of the variance-covariance matrix as in equation (23). 
Correlation coefficients are also ca1c~lated.l~ 

The program was tested by generating synthetic data 
for three types of problem : (i) spectrophotometric data 
only; (ii) potentiometric data only; and (iii) a combin- 
ation of spectrophotometric and potentiometric data. 
In the course of this work the importance of correctly 
weighting the data, when the variances of the residuals 
vary over several orders of magnitude, became apparent. 
Weighting the data has been emphasised pre- 

although a statistically correct weighting 
scheme is only possible if good estimates of the variance- 
covariance matrix observations are a~a i l ab le .~  A 
separate subroutine VARIAN to calculate weighting 
factors was written for both of the OBSERV sub- 
routines, but weighting was much more critical for 
potentiometric than spectrophotometric data, as 
found by other workers.20*5g*60 

In addition to experimental errors in the observables, 
it is important to consider systematic errors, for example 
in the total analytical concentrations of each of the 
species present. SillCn showed that such systematic 
errors should be treated as extra parameters in the 
computer evaluation of data.13*26 This is an important 
technique in defining a ' chemical model ', since often a 
better fit to the experimental data can be obtained by 
allowing those parameters liable to systematic error to 

b8 J. Rydberg, Acta Chem. Scand., 1961, 15, 1723. 
50 R. C. Lansbury, V. E. Price, and A. G. Smeeth, J .  Chem. 

N 

N 

N 

ERROR. 

Soc., 1965, 1896. 

be varied by the program than by the introduction of an 
extra species. If, of course, the adjustments made to 
these parameters are outside their possible experimental 
error, or if they vary systematically in an implausible 
way, then it is likely that the ' model ' is incorrect and 
further species exist. Accordingly, provision was incor- 
porated into DALSFEK for allowing the total analytical 
concentrations of each species to be varied. We have 
previously described an example where the application 
of this facility enabled us to detect a minor component 
formed when Na,[PdC14] is dissolved in glacial acetic 
acid.56 

Applications of D ALSFEK .--Copper( II)-ethyZenedi- 
amine-oxalate system. DeWitt and Watters 61' deter- 
mined the first and second (K4J equilibrium con- 
stants for the substitution by oxalate of ethylenediamine 
(en) bound to CuIT [reactions (42) and (43)]. These 
workers determined the pH and absorbances a t  six 

1<42 

[Cu(en)212+ + [C20412- * [Cu(en)(C204)] en (42) 
K , ,  

[CU (en) (CzO4) I + iIC204I 2- * [CU (CzO4) 21 2- -I- en (43) 
wavelengths for a series of solutions and calculated the 
equilibrium constants by three different procedures 
(Table 2). The original data were used as input in 

TABLE 2 
Comparison of calculation procedures for the equilibrium 

constants of equilibria (42) and (43) 
Method of Error or 
calculation pK,, range pK,, range Ref. 
Slope 

intercept 4.53 fO.18@ 5.88 Not stated 61 
Isosbestic 

Determinants 4.51 (4.38-4.74) a 5.62 (5.51--5.71) @ 61 
DALSFEK 4.78 0.022b 5.96 0.019b This 

work 

Error or 

points 4.54 (4.41-4.85) 6.60 (5.53-5.67) a 61 

a As recorded in ref. 61. Standard deviations. 

DALSFEK, the pH values as independent (error-free) 
variables held fixed in subroutine CONC, while the 
species distribution for each solution was calculated. 
The sum of the squares of the residuals in the absorb- 
ances was then minimised to calculate the equilibrium 
constants. Since ethylenediamine is a fairly strong 
base, allowance was made for its successive acid-dis- 
sociation constants using the same data as the original 
workers. Oxalic acid was assumed to be a sufficiently 
strong acid to remain dissociated throughout the pH 
range of the experiment (5.11-1 1.12), an assumption 
also made by the original workers. 

The results in Table 2 show fair agreement between 
the DALSFEK calculations and the original calculations. 
An even better agreement could probably have been 
obtained by a suitable weighting procedure, since the 
pH measurements are, of course, subject to error. How- 
ever, this is difficult to do without some prior estimate 

6o R. S. Tobias and 2. 2. Hugus, J .  Phys. Chem., 1961,65,2165. 
61 R. DeWitt and J. I. Watters, J .  Amer .  Chem. Soc., 1954, 76, 

3810. 
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of the variance of the pH readings. 
therefore used. 

Unit weights were 

PalladiuPtajri)-chlor~de-bromide system. Feldberg et 

in the vicinity of the minimum equation (45) applies 
where a, and b, are constants, which were evaluated by 

a1.8 published- a computer evaluation of the successive p, = anp4 -+ b, (p2 = 1-3) (45) 

plotting pn against p4 for the series of computer-calculated 
rapid-convergence values. As in so many practical 

formation constants- of [PdCLBr4-,]2- in aqueous 
solution. These workers obtained very precise absorb- 

data (IkO*OO1 absorbance unit) On 61 in problems, the shape of the parameter surface near the 
Kn minimum appears to be a skewed flat-bottomed trough 

Sillh's twist-matrix method l3 for deciding on the most 
efficient manner in which to vary Pn.8 These p values 

CPdC','r4-fi12- -I- Br----L [PdC1,-1Br5-,12- -I- ''- (44) and equation (45) therefore offers an alternative to 
which they varied the [Br-] : [Cl-] ratio over a very wide 
range. Their computer program used the method of 

TABLE 3 
Comparison of the equilibrium constants and molar absorption coefficients for the [PdCl,Br,-,] 2- system calculated 

by using DALSFEK with those reported in the literature 
K,  a DALSFEK Literature oKTL DALSFEK Literature e 

K ,  25.45 25.13 =K1 1.88 1.47 
K2 11.38 11.48 OK2 0.30 0.522 
K3 5.25 5.248 =K3 0.34 0.314 
K4 1.89 1.862 =K4 0.10 0.129 

&/drn3 mol-1 cm-1 

[PdC1,RrI2- [ PdC12Br2] 2- [PdC1Br312- 
7 -___ -4- _____ r- 

.I 
-7 ___I_ r -7 r--* 7 f - -  

Alnm DALSFEK Literature DALSFEK Literature d DALSFEK Literature d 

265 1611 1 700 2 669 2 700 6 911 6 900 
2 900 275 4 939 5 000 2 482 2 500 2 808 

285 10 320 10 300 4 876 4 900 1725 1700 
295 11 710 11 700 9 066 9 000 3 431 3 500 
305 8 992 8 900 10 700 10 700 7 752 7 800 
315 5 019 5 100 9 365 9 400 10 510 10 400 
325 2 207 2 000 6 643 6 500 9 810 9 900 
335 926 1 000 4 105 4 000 7 545 7 600 
345 568 500 2 178 2 000 5 252 5 200 
355 601 1 074 1 000 3 428 3 500 
365 615 642 2 032 1.900 
375 564 472 1346 

All the data are from ref. 8. a Kfl  is defined by equilibrium (44). The reference quotes log,,Kn. The values tabulated here 
The original paper quoted a(log,,K,) values. The quantities tabulated here were 

d The literature values of E were read from the published spectra since numerical 
are the antilogarithms of the original values. 
obtained using the formula sy2 = ( a y / a ~ ) ~ ~ ~ ~ .  
values were not reported. 

steepest descent. Starting from several initial guessed 
values of the overall formation constants (pa ) ,  the pro- 
gram was allowed to iterate towards the minimum 
until a particular tolerance limit was satisfied. This 
resulted in several sets of rapid convergence values. I t  
was found that the sum of the squares of the errors, S ,  was 
very insensitive to the rapid convergence value, especi- 
ally in the case of p4. This was because the highly 
correlated parameters produced a broad flat minimum in 
multidimensional space. Not surprisingly, therefore, 
the use of the steepest-descent method meant that unless 
the convergence tolerance was reduced to a very small 
value, and the program allowed to iterate for a long time, 
the minimum attained for each set of initial guessed 
values was different. The solution used by the original 
workers was to plot out the value of the sum of the 
squares of the errors as a function of log,,$, in order to 
find an optimum value of p4. Finally, the corresponding 
values of PI, p2, and p3 were calculated by noting that 

* Feldberg e t  al. quoted 1200 s on a CDC 6600. Whilst 
a 7600 is faster than a 6600 computer i t  is not six times faster 
so that the present program is clearly a more efficient one than 
than that used by the previous workers. 

were used as highly refined initial guesses for calculating 
the final set of formation constants. 

The original data of Feldberg et al. were obtained and 
analysed using DALSFEK to determine not only the 
equilibrium constants but also the molar absorbances of 
the species present. DALSFEK was able, in a reason- 
able amount of time (ca. 200 s on a CDC 7600 *) to dupli- 
cate the results of Feldberg et al. from almost any set 
of initial guessed values (see Table 3). Because 
Marquardt 's algorithm calculates the best search direc- 
tion automatically, the time-consuming graphical pro- 
cesses have been eliminated. In addition, the use of a 
least-squares procedure has enabled estimates of the 
standard deviations of the equilibrium constants to be 
made, whereas Feldberg et al. could only obtain these 
quantities by dividing their data into subsets. In view 
of the different manner of calculating these deviations, 
the agreement is surprisingly good. 

Other systems. We have previously described the 
application of DALSFEK to a spectrophotometric 
determination of the palladium(I1)-chloro-olefin system 
in acetic acid 56 and to a potentiometric study of silver(1)- 
olefin equilibrium constants in a number of  solvent^.^' 
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In the latter case DALSFEK was compared with other 
computational procedures and found to give identical 
results. 

Conclusions.-DALSFEK is a versatile computer 
program for the determination of equilibrium constants, 
from either spectrophotometric or potentiometric data, 
or a combination of both types of data. It is relatively 
simple to use taking ca. 1 h to prepare and punch up the 
data. The use of Marquardt’s algorithm ensures a 
rapid convergence to the minimum and imposes less 

restrictions on the precision of the initial guessed values 
of the parameters than most other programs we have 
examined. 
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